
 Operating System (5th semester)

Prepared by SANJIT KUMAR BARIK (ASST PROF, CSE)

 MODULE-III

TEXT BOOK:

1. Operating System Concepts – Abraham Silberschatz, Peter Baer Galvin,

Greg Gagne, 8th edition, Wiley-India, 2009.

2. Modern Operating Systems – Andrew S. Tanenbaum, 3rd Edition, PHI

3. Operating Systems: A Spiral Approach – Elmasri, Carrick, Levine, TMH

Edition.

DISCLAIMER:

“THIS DOCUMENT DOES NOT CLAIM ANY ORIGINALITY AND CANNOT BE USED AS A

SUBSTITUTE FOR PRESCRIBED TEXTBOOKS. THE INFORMATION PRESENTED HERE IS

MERELY A COLLECTION FROM DIFFERENT REFERENCE BOOKS AND INTERNET

CONTENTS. THE OWNERSHIP OF THE INFORMATION LIES WITH THE RESPECTIVE

AUTHORS OR INSTITUTIONS.”

Memory Management

Main Memory refers to a physical memory that is the internal memory to
the computer. The word main is used to distinguish it from external mass
storage devices such as disk drives. Main memory is also known as RAM.
The computer is able to change only data that is in main memory.
Therefore, every program we execute and every file we access must be
copied from a storage device into main memory.

A program resides on a disk as binary execution file. The program must be
brought into memory and placed within a process area (user space) to be
executed. Depending on the memory management in use the process may
be moved between disk and memory during its execution.

The collection of process on the disk that are waiting to be brought into
memory for execution forms input queue i.e selected one of the process in
the input queue and to load that process into memory.

All the programs are loaded in the main memory for execution. Sometimes
complete program is loaded into the memory, but sometimes a certain part
or routine of the program is loaded into the main memory only when it is
called by the program, this mechanism is called Dynamic Loading, this
enhance the performance.

Also, at times one program is dependent on some other program. In such a
case, rather than loading all the dependent programs, CPU links the
dependent programs to the main executing program when it is required.
This mechanism is known as Dynamic Linking.

Memory protection:

We can provide protection by using two registers:

Base register holds the smallest legal physical memory address.

Limit register specifies the size of range of the process.

Ex: if the base register holds 300040 and the limit register is 120900,then the

program can legally access all the address from 300040 through 420939(inclusive)

OS

Process

Process

process

 256000

 300040

 420940

 880000

300040

120900

base

Memory Management Basic Concepts:

Address Binding:

In a system, the user program have symbolic name for address like

ptr,addr,and so on. When the program gets compiled, the compiler bind

symbolic addresses to relocate-able addresses and then the linkage editor

or loader will bind relocateble address to absolute address. At each step

binding is mapping from one address space to another space ,the binding

of user program(instructions and data) to memory address can be done at

any time- compile time , load time or execution time.

A.Compile-time binding:

If starting location of user program in memory is known at compile time,

then compiler generates absolute code. Absolute code is executable binary

code that must always be loaded at a specific location in memory. If

location of user program changes, then program need to be recompiled.

Ex: Ms-DOS.COM programs in MS-DOS OS are absolute code generates by

compile time binding.

B. Load time Binding:

If the location of user program in memory is not known at compile time, the

compiler generates relocateble code .If location of user program changes,

then program need not to be recompiled , only user code need to be

reloaded to integrates changes.

C.Run time binding:

Programs (or process) may need to be relocated during runtime from one

memory segment to another. Run-time (execution time) binding is most

popular and flexible scheme, providing we have the required H/W support

available in the system.

Logical and Physical address:

The address defined and referenced by user (programmer) in their program

is called logical address. CPU generates logical address.

Physical address is the address generated by OS and is the actual physical

address in the system memory. The logical address is also known as virtual

address and physical address is known as real address.

At compile time and load time address binding the logical and physical

address are generated are same but at execution time address binding of

logical and physical addresses are different.

The space set aside for set of all logical address defined and referenced by

user in their program are called logical address space and the space set

aside for set of all physical address corresponding to these logical address

is known as physical address space.

Mapping from virtual address to Physical address:

It is handled by H/W device memory management unit(MMU) that

generates physical memory corresponding to each logical address

(memory).There are various methods to perform mapping from virtual to

physical address. Some of these are paging, segmentation and so on.

Simple MMU scheme for mapping virtual to physical addresses:-

In this scheme there are two registers base registers and limit registers.

The base register (also called relocation registers) contain the starting

(base) address from where the user programs start in memory.

EX: If user programs starts at 1000 in memory, then base register contains

the value 1000.The limit register contains the value that specifies the

range(or boundary) so that user program can access address within that

range only. In other-word limit register specify the range of logical address

to be used by the user programs.

Ex: if limit register contains the value 1500,and base register contains the

value 1000 then, user program can access address from range 1000 to

2499

Limit register solves the protection problem by bounding each user

programs to works in its defined range only and does not illegally or

accidentally access other users program area.

(MMU scheme for mapping virtual address to physical address)

Basically there are four function of memory management:

1. Keep track by which part of the memory will be currently used.

2. Deciding which process is to be loaded into the memory.

3. Allocation of memory is an efficient manner.

4. Deallocation of memory.

CPU

1000

 +

1500

 +

< Computer Memory

Managed by

MMU

Generates

logic

address

250 250+1000=1250

Base register

Limit

register

Yes= 1250

Corresponding to

physical address

Address out of bound

(illegal)

Memory management Techniques:

Fixed partition (Static partition):-

 No of partitions are fixed.

 Size of each partition may or may not same.

 Contiguous allocation so spanning is not allowed.

Ex: p1=2MB,P2:7 MB,P3=7 MB,P4=14 MB

Drawback:

1. Internal fragmentation

2. Limit in process size(32 MB of process cannot be accommodated)

3. Limit on degree of multiprogramming

(P5 cannot be brought into RAM)

4. External fragmentation occur(5 mb)

Continuous

Non- contiguous

Fixed partition Variable partition

Paging Multi-level paging Inverted paging Segmentation

Segmentation &

paging

Os

P1=2mb

1mb

P3=7

1mb

P4=14mb

2mb

OS

8 mb

8mb

8mb

8mb

4

8 P2=7

8

16

2m

b

Multiprogramming with Fixed partition:

Earlier in multiprogramming system the main memory was divided into fixed

partitions where each partition was capable of holding one process. Fixed

partitions can be of equal sizes or unequal sizes .but their size once fixed cannot be

changed means staring and an end address of each partition is fixed in advance.

In case of equal size fixed partition, there is a single process queue in which all the

processes waiting to come in main memory for execution are maintained. If there

is partition available, the process is loaded into that partition. Since all partitions

are equal size, it does not matter which partition is used.

 [Equal size partition]

os

partition1

partition2

partion3

partion4

New process

that enters the

system is stored

in this queue

Process queue

Process are stored in

any available

partition as all partition

are equal of size

Partitions are

equal size

Unequal size fixed partition:

In case of unequal size fixed partition, the size of each partition is fixed once in

starting and that size cannot be changed, it is fixed.

Ex: Suppose system has memory of size 64 kb. Out of this 16kb is occupied by OS

and rest 48 kb is there for user process. This is divided into five partitions as:

Two partitions of size 4kb

One partition of size 8 kb

Two partition of size 16kb

 [Unequal size partition]

New

process that

enters the

system can

be stored in

any of the

queue

depending

upon the

size of the

partition it

best fit into

OS

16kb

Partition- 1

4Kb

Partition-2

 4 Kb

Partition-3

8kb

Partition-4

16 kb

Partition-5

16kb

Process queue for partion-1

Process queue for partion-2

Process queue for partion-3

Process queue for partion-4

Process queue for partion-5

Partition

can be of

un-equal

size but

partition

size once

fixes

cannot be

changed

A separate process queue is maintained corresponding to each partition size. Here

strategy is that when a new process enters the system it is stored in the queue of

that partition whose size is best fitted to accommodate that program. The problem

is here that some queues might be empty while some might be loaded.

In both cases [equal or unequal size partition] when a program completes its

execution and terminates, its allocated memory partition is free for another

program waiting in a queue. But this multiprogramming with restriction of fixed

size causes wastage of memory and lead to internal fragmentation.

Internal fragmentation: It is problem that occurs when size of the program is

smaller than the size of partition allocated to it as this extract allocated memory is

not used by program and got wasted.

Advantage:

 Easy to use (implement)

 Allocation and de-allocation of process is easy

Multiprogramming with Variables Partitions:

In multiprogramming system with variable partitions the main memory is divided

into partitions that are variable (not fixed). Here in this system:

- Each system is capable of holding one process.

- Partition can change size as the need arises.

- The adjacent free partitions can combine together if needed so as to form

bigger space to accommodate large process.

- There can be different number of partitions depending upon the size of

memory.

There is a process queue in which all the processes waiting to come in main

memory for execution are maintained .The OS uses scheduling algorithm to

dispatch process one by one from the process queue. If there is partition

available large enough to accommodate the process, OS loads the process into

that partition. When a program completes its execution and terminates, its

allocated memory area is free. The various available memory areas are called

holes. As the memory is allocated and de-allocated , holes will appear in the

memory .Holes of various sizes are spread throughout the memory.

When a process is dispatched from process queue to store in memory , OS first

searches for the Hole large enough to accommodate that process .If none of the

available holes are large enough to accommodate that process then available

adjacent free partitions can be merged together to form a big hole (bigger space) to

accommodate that process. This process of merging adjacent free partitions to form

big hole is called coalescing.

OS

P1

P2

P3

P4

P5

Hole

OS

P1

P2

Hole

P4

P5

Hole

OS

Hole

P2

Hole

P4

P5

Hole

P3 completes so its

allocated memory area

is free

P1

complet

es so its

allocate

d

memory

area is

free

[Holes in variable partitions multiprogramming system]

OS

P1

Hole 2 MB

P3 (4 MB)

P4

P5

Hole

OS

P1

Hole 2MB

Hole 4MB

P4

P5

Hole

OS

P1

Hole 6MB

P4

P5

Hole

P3

completes

OS merged

together adjacent

free holes to form

big hole

Coalescing Technique

There are three main approaches to assign available Hole to the process. The OS

can Use any of these approaches depending upon its strategy. These approaches

are:

1. First fit: There may be many holes available in the memory. In this

approach the OS did not waste time in searching the free hole large enough

to accommodate the given process , instead it allocates the first hole it find

large enough to satisfy the request.

2. Best fit: In this approach OS maintains ordered list holes. When a process

arrives ,the OS allocates the smallest hole from that available holes

(arranged order) that is large enough to accommodate the given process

.Using this method , the memory has the smallest leftover.(allocate the

smallest hole that is big enough).

3. Worst fit: When a process arrives, the OS allocate the largest hole (from the

list of available holes) that is large enough to accommodate the given

process. Using this method , the method has the largest leftover hole, this

largest leftover hole may be more useful than smallest leftover hole because

that largest left over hole may be too large to accommodate any process(

allocate the largest hole).

Multiprogramming system with variable partitions suffers from problem of

external fragmentation. External fragmentation occurs when a system has

enough holes(free spaces) satisfy the process space requirements but hole are

non-contiguous , means spread through memory they are of no use.(they are

too small to satisfy any process request).These scattered holes if combined

together to form one contiguous hole may form a large percentage of disk free

space.

New process P7 =7 MB

OS

P1

Hole 2 MB

P3

P4

Hole 6MB

P6

These scattered holes can accommodate process

p7 but since they are not contiguous, they are of

no use.

[External fragmentation]

EX: first-Fit, Best-fit, worst –fit

p1=15k

Coalescing is one solution to external fragmentation .Another solution to reduce

external fragmentation is compaction. In compaction all the allocated blocks are

moved to one end of memory, hence all the allocated blocks are together and all

the holes are together in memory. So now holes are continuous instead of scattered

throughout the memory and thus can be used more efficiently. Compaction is

sometimes called garbage collection.

Disadvantage of memory compaction:

1. Much of CPU time and other system resources got wasted in compaction

procedure.

2. During compaction some compaction tasks need to be halted which can

create problematic situation especially in interactive and real time systems.

3. Compaction requires relocation of process i.e moving process and its

associated data to new address. This will changes base address of process

and requires changing the base register value to hold new changed value.

Hence system need to maintain all this relocation information which itself is

a big overhead. Also if relocation is static means done at load time

P1(hole)

Hole

Hole

hole

P10

25K

P11

40k

P12

100k

P13

20k

P4

10k

P15

P1=15K first fit

First fit=simple/fast

Best fit=slow/internal fragmentation will be less

Worst fit= slow

compaction is not possible. Compaction is possible when relocation is

dynamic means done at run time.

Solution this problem of fragmentation are paging and segmentation

Advantage of Variable Partition:

1. No internal fragmentation

2. No limitation of degree of multiprogramming

3. No limit of process size

Draw back:

1. External fragmentation

2. Allocation and Deallocation is complex

OS

P1=2mb

Hole

P3=4mb

Hole

PAGING:

1. Basic paging Method

2. Paging H/W-TLB(Translation Look –aside buffer)

3. Different types of page table

a. Hierarchical paging

b. Hashed paged Table

c. Inverted Page table

Basic paging Method:

Paging is one of the memory management scheme used generally in most of the

OS. Paging is good solution to problem of fragmentation. In paging both physical

and virtual memory are divided into fixed sized blocks. These fixed sized blocks

are called frames in physical memory and pages in logical memory. Both frame

and pages are of same size.

Page size is decided by the paging H/W.Page size is of the form 2x
 (power of 2 i.e

24
 =16 and so on). .If suppose logical address is of size 2m (unit can be bits , bytes or

word) in which page size is 2n , then higher order (m-n) bits of logical address

denotes page number and ‘n’ lower bits denotes page offset.

Hence logical address division is:

Ex: logical address of size of 216 and page size is 26

Page number offset

 m-n n

Page Number page offset

 m-n =10 n=6

M=16

15 6 5 0

Consider an Example:

Physical memory is of size 16 bytes. Logical memory has pages of size 2 bytes

each. So total number of pages can be stored in physical memory = Physical

memory size/logical memory size (page size) =16/2=8 pages.

The formula to find out physical address corresponding to logical address is:

(Frame number X page size)+page offset

Ex: logical address 0 is page no. 0 , page offset 0 and frame no. 4
Physical address =(4*2)+0=8
Logical address 0 maps to physical address 8 and the data here is “ab”

 3 1

Frame no. frame offset/size

 Physical address 4 bits

EXAMPLE:

Assignment:

Question1: Consider a system which has logical address (LA=7bits), Physical

address =6bits, page size =8 word, and then calculate the no. of pages and no. of

frames.

Question2: Logical address space(LAS)=4GB,Physical Address space (PAS)=64GB,

and the page size=4KB, then determine the following:

No. of pages=?

No. of frames=?

No. of entries in page Table=?

Size of page table =?

Paging H/W –TLB(Translation Look –aside Buffer)

Paging requires a large amount of mapping information and this mapping

information in form of page table is generally stored in physical memory so paging

logically requires to access memory very often .Each time a virtual address

generated by the program, memory access to read the page table is required so as

to map virtual address to physical address. Accessing the page table after each

virtual address generated by CPU (once per instruction) makes the system

considerably slow and affects the system performance .Many times not one but

several memory access are required per instruction and this make the situation

more worse by degrading the system performance terribly low .Memory page table

can be faster on context switching but very time consuming in actual accessing.

So to overcome this problem, the solution is to use small and fast to access

hardware cache known as TLB(Translation Look –aside Buffer).TLB is the part of

MMU and is used for virtual to physical address translation.

TLB construction:

TLB is in the form of table where each row of TLB consists of a page number and

its associated frame number. We know that the logical address generated by CPU

has two parts-page number and page offset. So whenever CPU generates logical

address, page number part of this address is searched in the TLB. If the required

page number is found in the TLB, this is known as TLB hit and its associated

frame number is used to map the logical address to the physical address.

If the page number is not found in the TLB, this is known as TLB miss and then

the page table is referenced. From the page table frame number is obtained which

is for mapping and also this page number and frame number entry is done in the

TLB so that they can be found when TLB is referenced next time. If the TLB is

already full then OS uses page replacement algorithm (policies) like LRU,FIFO

and so on to transfer one old entry to disk storage so as to make for new entry that

shows in figure paging using TLB.

There is one important thing that needs to be taken care with TLBs .The TLB

contains entry for virtual address to physical translations that are only valid for the

currently executing process and these translations entries in TLB are of no use for

other processes. Therefore when context switching takes place from one process to

another, the paging H/W and OS should make sure that processes that gives to be

executed next and using the TLB doesn’t accidentally use TLB entry of some

previously executed process. To solve this problem there are two approaches:

1. Flush(Erase):

Flush the TLB each time there is a context switch means clearing off the

TLB entries before processes that is going to be executed and using the TLB

starts its execution.

2. Address space identifiers:(ASID)

Add one more field in the TLB called Address space identifiers(ASID)

along with each page number and frame number entry in the TLB.ASID

uniquely identifies a process and is used to differentiates one process from

the other. ASID is somewhat like a process identifier (PID), but usually

ASID has fewer bits as compared to PID. Hence, with ASID the TLB can

have translation entries of different processes at the same without any

problem, when page number entry is found in TLB, then ASID associated it

with is also matched with currently executing process ASID

If TLB ASID entry matches with currently executing process ASID, it is a

TLB hit other TLB miss.

TLB problem:

Assume that the TLB search time is 9s and memory access time is 100ns.If TLB is

not used , then memory access time= 2 * 100 ns=200ns.

If the TLB is used then:

If the TLB hit= 9s+100ns=109ns

TLB miss= (9s+100s+100ns=209ns)

Let TLB hit ratio =80%i.e means for 80% of time the page number is found in the

TLB and 20% of time the page number not found in the TLB i.e 20% of TLB miss

ratio.

For 80%, the time taken 109ns (TLB hit)

And 20%, the time taken 209ns (TLB miss)

So, effective access time: 0.8 *109ns+0.2*209ns

General formula=

ETA=H * (T+t)+(1-H)*(2T+t)

Where H=probability that an intended frame number would be found in TLB itself (H

proportional to size of TLB)

T=RAM access time

t=TLB access time

While effective memory access time (without TLB) =2T.

Effective access time

Q.A paging scheme using TLB. TLB access time 10ns and main memory access time takes 50 ns.

What is the effective memory access time(in ns)if TLB hit ratio is 90% and there is no page fault.

ETA= 90%(50+10)+10%(2*50+10)=65ns

Q. H=0.9 t=20ns T=100ns calculate the reduction in memory access time.

Solution: Effective memory acess time with TLB:

 ETA=H * (T+t)+(1-H)*(2T+t)

 0.9*120+0.1*220

 =130ns

Effective memory access time without TLB: =2T=2*100=200ns

 Reduction in memory access time

 = ((200-130)/200)*100=35%.

Segmentation:

Segmentation is the scheme used by memory-management unit for virtual to

physical address translation. Segmentation provides a view that a user can more

easily relate and understand. This is because a user program has different

segments such as main program, procedure, functions, local variables, global

variables, common block, stack, symbol table, arrays, and other data structures

and so on. All the segments define in a user program have specific purpose and

that is why these segments are of variable length. Also user is not concerned

where and how these elements are stored in memory. Using segmentation the

logical address space (where user program resides), is divided into segments

where each segments is of variable length and different segments can be stored

anywhere in memory. Thus user defined segmentation more easy to relate with

their program without going into details of how these segmentation are

managed. The logical address space where user program resides from user

outlook is shown in figure.

Segmentation Implementation:

In segmentation, each segment in the logical address space has a specific number

and the length associated with it. Each segment has starting address (base) and

limit that seats the range that seats the range of that segment. In paging, user

specifies the logical address which was divides into page number and page offset

by paging H/W, but in segmentation the user specifies the logical address using

two dimensions:

<Segment number, segment offset>

Thus in segmentation two –dimensional user defined logical is to be mapped into

one –dimensional physical address. For this segment table is used .Each entry in

the segment table has:

1. Base that points the starting address of the segment in physical memory.

2. Limit that specifies the length of the segment.

Segmentation Disadvantage:

1. Segmentation requires more complicated Hardware for address translation

than paging.

2. Segmentation suffers from external fragmentation. Paging only yields a

small internal fragmentation.

Paged segmentation (or segmentation with paging):

To take advantage both paging and segmentation some system combines both of

these approaches. This approach is called paged segmentation or we can say

segmentation with paging. In this technique, segment is viewed as a collection of

pages. Logical address generated by CPU is divided into three parts- the segment,

the page and the offset, this is shown in figure.

 The segment is used as an index is segment table. Entry in the segment

table contains the base address of the page table.

Segment Page Offset

Logical address division in paged segmentation

 Page number is used as an index in a page table and selects an entry within

page table. Page table is used to stored frame number of each page in

physical memory. This frame number is actually the base address of the

page. This frame number + offset part of logical address forms the physical

address. The physical address is the actual address in computer physical

memory corresponding to the logical address generated by CPU.

Virtual memory
(Introduction)

Virtual memory is a concept of an OS that virtually increases the apparent size of

main memory and gives liberty of user (programmer) to write programs without

worrying about the size of physical memory. The user has an illusion of an

extremely large main memory but in actual only a limited memory is available.

The user actually uses address and space of virtually memory which is then

translated (mapped) into corresponding main memory space. The address

generated and referenced by user program is called virtual address and the

collection of virtual address forms virtual address space. Similarly, the address of

main memory is called physical address and collection of physical address is called

physical address space.

The OS implement virtual memory concept by loading only that portion of the

user program at a time from disk storage(2ndry memory) into main memory that is

currently need to be executed instead of loading full program in main memory.

Also that portion of user program that is not currently required is temporarily full

program in main memory. Also that portion of user program that is not currently

required is temporarily transferred back from main memory to disk storage (2ndry

memory) to make space or other program. For example: following are situations

when entire program is not required to be loaded fully in main memory.

 Parts of the program called error handing routines are used when an error

occurs.

 Some functions and procedures of a program may be used seldom.

 Many data structures like arrays, structures, tables etc are assigned a fixed

size of memory space in user programs but actually only a small amount of

memory assigned to these data structures is used.

Thus virtual memory gives the facility to execute a program by loading only

portion of the program in main memory instead of entire program. This concept

provides many benefits:

 The user (programmer) is no longer be bounded by the amount of main

memory that is available and can write programs without worrying about

the size of memory.

 Since each user program is loaded in portion into main memory thus taking

less memory space so more programs could reside in main memory and

execute simultaneously. This will lead to efficient CPU utilization and

throughput and will give overall good system performance.

Virtually memory is generally implemented by demand paging. It can also

implement in a segmentation system. Demand segmentation can also be used to

provide virtual memory.

Demand Paging:

The concept of virtual memory is generally implemented by demand paging .A

demand paging system is pretty like a paging system but with additional feature

of swapping. The user process resides in 2ndry memory and is a considered as a set

of pages. The basic concept of demand paging is when we want to execute a

process, than instead of bringing (swapping in) the entire process from 2ndry

memory into main memory, we use a lazy swapper called pager which swaps only

those pages into memory that are needed currently. Thus, pages that are not

needed in process execution are not brought into main memory. This

considerably reduces the time required for swapping and the amount of physical

memory needed by a process.

To implement demand paging Hardware support is required to identify which

pages are in memory and which pages is on the disk. To do this page

identification, method of valid –invalid bit is used. Each page in main memory has

associated bit with it. The pages that are currently in main memory and are legally

valid, their corresponding bit is set to “valid” (V). The pages that are currently not

in main memory (it is in 2ndry memory) or legally not valid, their corresponding bit

is set to “Invalid”(I).A page is invalid if it is not present in logical address space.

The 2ndary memory holds the pages that are not in main memory and swapping

in and out of pages are done between main and 2ndary memory.

Step6. The instruction that was interrupted due to page fault is now restarted as

the required page is now available in the main memory.

Performance of Demand Paging:

Page replacement Algorithms

 Introduction

 FIFO Page replacement Algorithm

 Optimal page replacement algorithm

 LRU page replacement algorithm

 LRU –Approximation Page replacement

 Counting –Based page replacement

 Page-buffering Algorithms.

Introduction:

FIFO PAGE REPLACEMNT ALGORITHM:

The First-in First –Out (FIFO) page replacement algorithm is one of the easy to

implement algorithm. As the name suggest the operating system maintains a FIFO

queue to store pages in memory. The pages are arranged in FIFO queue according

to their arrival. As the new page is brought from 2ndary memory, it is placed at the

tail (end) of the queue. When a page needs to be swapped out, the page at the

head (front) of the queue (the oldest page) is selected.

Optimal page replacement algorithm:

An optimal page replacement algorithm (also known as MIN) has the least

possible page fault rate among all the page replacement algorithms. When a page

needs to be swapped-out so as to swap in required page from 2ndary memory, the

OS choose that page for swapping out, whose next use is predicted late in future.

The problem with this algorithm is that it is not practicable to implement in real

situations. This is because OS need to know in advance after how much time the

page will be referenced again, means OS should know reference string

beforehand. Optimal page replacement algorithm does not suffer from Belady’s

anomaly phenomenon.

Numerical on Optimal and FIFO:

Q. Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2. the number of

frames in the memory is 3. Find out the number of page faults respective
to:

1. Optimal Page Replacement Algorithm

2. FIFO Page Replacement Algorithm

Optimal Page Replacement Algorithm

Number of Page Faults in Optimal Page Replacement Algorithm = 5

FIFO Page Replacement Algorithm

Number of Page Faults in FIFO = 6

Q. Given reference String is as 0 ,1 ,5,3 ,0 ,1, 4 ,0, 1, 5, 3, 4.

Let's analyze the behavior of FIFO algorithm in two cases (take

no. of frame 3 and 4).

Case 1: Number of frames = 3

Request 0 1 5 3 0 1 4 0 1 5 3 4

Frame

3

 5 5 5 1 1 1 1 1 3 3

Frame

2

 1 1 1 0 0 0 0 0 5 5 5

Frame

1

0 0 0 3 3 3 4 4 4 4 4 4

Miss/Hit Miss Miss Miss Miss Miss Miss Miss Hit Hit Miss Miss Hit

Number of Page Faults = 9

Case 2: Number of frames = 4

Request 0 1 5 3 0 1 4 0 1 5 3 4

Frame

4

 3 3 3 3 3 3 5 5 5

Frame

3

 5 5 5 5 5 5 1 1 1 1

Frame

2

 1 1 1 1 1 1 0 0 0 0 4

Frame

1

0 0 0 0 0 0 4 4 4 4 3 3

Miss/Hit Miss Miss Miss Miss Hit Hit Miss Miss Miss Miss Miss Miss

Number of Page Faults = 10

Therefore, in this example, the number of page faults is increasing by increasing

the number of frames hence this suffers from Belady'sAnomaly.

Q. Given reference string is as 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1. The number

of frames in the memory is 4. Find out the number of page faults in case Optimal

Page Replacement Algorithm. Also find out hit ratio and miss ratio.

LRU page replacement algorithm:

Q. Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2. the number of frames in the memory is 3.

Find out the number of page faults respective to: LRU replacement algorithm

Ans:

Number of Page Faults in LRU = 6

LRU –Approximation Page replacement

Ex: R-string: 2 3 2 1 5 2 4 5 3 2 5 2

Request 2 Set

bit

3 Set

bit

2 Set

bit

1 Set

bit

5 Set

bit
2 Set

bit

4 Set

bit

5 Set

bit

3 Set

bit

2 Set

bit

5 Se

t

bit

2

F1 2 0 2 0 2 1 2 1 2 0 2 1 2 0 2 0 3 0 3 0 3 0 3

F2 - 3 0 3 0 3 0 5 0 5 0 5 0 5 1 5 1 5 0 5 1 5

F3 - - - 1 0 1 0 1 0 4 0 4 0 4 0 2 0 2 0 2

Miss/Hi

t

Mis

s

 Mis

s

 Hit Mi

ss

 Mis

s

 hit mis

s

 hit mi

ss

 mis

s

 h

i

t

 h

i

t

	Numerical on Optimal and FIFO:
	Q. Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2. the number of frames in the memory is 3. Find out the number of page faults respective to:
	Optimal Page Replacement Algorithm
	FIFO Page Replacement Algorithm
	Case 1: Number of frames = 3
	Case 2: Number of frames = 4
	Q. Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2. the number of frames in the memory is 3. Find out the number of page faults respective to: LRU replacement algorithm
	Ans:
	Number of Page Faults in LRU = 6
	LRU –Approximation Page replacement
	Ex: R-string: 2 3 2 1 5 2 4 5 3 2 5 2

